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Course Learning Outcomes (CLOs): After completing this course successfully, the students will be able to-

CLO1 Understand the types of loads and stresses in different loaded members and develop
skills to determine them.
CLO 2 Identify the magnitude of safe loads and stresses to operate individual members and

structures without failure.

CLO3 Perform structural design by determining the value of shear force and bending
moment at a given point for structural members such as a beam, column, frame, etc.

CLO4 Assess the deflections and deformations of loaded flexural members.



SL Content of Course Hrs CLOs
Introduction and analysis of internal forces: Tension, compression, axial stress, strain,
shear stress, shear force, bending moment, deformation, stress-strain diagram,
elasticity, rigidity, yield strength, ultimate strength, strain hardening, strain softening,

1 ST ST - e - : - 8 CLO1,CLO 2
elastic limits, plastic limit, fracture point, ductility, engineering stress-strain, true
stress-strain, bone shear failure, hardness, brittleness, resilience and toughness.
Definition of some mechanical properties of materials: Poisson’s ratio, definition of

5 torque and torsion, stresses in thin walled pressure vessels: hoop and longitudinal 8 | cLo2 cLO3
stress, Thermal Stress-strain Equation, Problem Solving, Thin Walled Pressure Vessel ’
Equation

3 Shea.r Force and Bending Moment Diagram, Bending Stress, Equation, Problem 5 CLO2. CLO3
Solving

4 | Torsion and Mohr's Circle 10 | CLO3, CLO4

Text Book:

Strength of Materials (4t ed.). Pytel, A. & Singer, F. L., Harper Collins Inc., 1987; ISBN: 0-06-350599-1
Mechanics of Materials. Beer and Johnston; McGraw- Hill, 2009; ISBN: 0073529389
Mechanics of Materials (9t ed.). Hibbeler, R. C., Pearson Prentice Hall, 2014; ISBN: 10: 0-13-3254429



ASSESSMENT PATTERN
CIE- Continuous Internal Evaluation (90 Marks)
SEE- Semester End Examination (60 Marks)

Bloom’s Category Tests
Remember 10
Understand 10
Apply 10
Analyze 15
Evaluate 10
Create 5
. : External Participation in
Bloom’s Category Tests Assignments | Quizzes _ :
Marks (out of 90) (45) (15) (15) Cu rrlcula_r/_C_o-CurrlcuIar
Activities (15)
Remember 10 10
Understand 5 5
Apply 10 Attendance
Analyze 10 15
Evaluate 5
Create 5 15




Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Week Topic Teaching-Learning Assessment Strategy | Corresponding
Strategy CLOs
1 Tension, compression, axial stress, strain, Shear stress, shear force, bending | Lecture, discussion, group work Quiz, Written Exam
moment, deformation CLO1
2 Tensile stress-strain diagram Oral Presentation, Lecture, Assignment, Written, Quiz
discussion, group work CLO1
3 Elasticity, rigidity, yield strength, ultimate strength, Elastic limits, plastic limit | Video lecture Report writing, Demonstration
and fracture point, Strain hardening and strain softening properties
CLO1
4 Details of ductility, True stress-strain Diagram, Bone shear failure Lecture Viva, Quiz
CLO1, CLO2
5 Hardness and brittleness, Resilience and toughness, Poisson’s ratio and torque | Lecture, discussion, group work Project, Field visit
CLO2
6 hoop stress and longitudinal stress Discussion, Video Presentation Quiz, Written Exam CLO?
7 SFD and BMD Problem solving Case-based Learning, Assignment, Written, Quiz
Demonstration CLO2
8 Thin Walled Pressure Vessel Equation, Problem Solving Lecture, discussion, group work Report writing, Demonstration cLO?
9 Thermal Stress-strain Equation Oral Presentation, debate Viva, Quiz cLO2
10 Expression for bending Stress Video lecture Project, Field visit

CLO3



Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Week Topic Teaching-Learning | Assessment Strategy | Corresponding
Strategy CLOs
11 |Bending stress related problem Lecture, Oral Quiz, Written Exam
Presentation CLO3
12 |Torsion Assignment, Written,
Lecture, discussion, |Quiz CLO3
13 |Torsion Discussion, Video Report writing,
: : CLO3
Presentation Demonstration
14 | Mohr Circle construction Principle Case-based Learning, |Viva, Quiz CLO3
Demonstration
15 |Mohr Circle Related Problem Lecture, discussion, Project, Field visit cLO4
group work
16 |Mohr Circle Related Problem Oral Presentation Quiz, Written Exam CLOA
17 |Practice and Exercise, Practice and Exercise, Practice | Group Discussion Assignment, Written, CLO3, CLO4

and Exercise

Quiz
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Tension and Compression

Tension and compression are forces that act on materials, causing them to stretch or squeeze
In different ways:

Tension
A pulling or stretching force that causes a material to elongate or deform. Tension is often
referred to as positive stress.

Compression
A pushing or squeezing force that causes a material to shorten or deform. Compression is
often referred to as negative stress.



Axial Stress and Strain

Stress can be defined by ratio of the perpendicular force applied to a specimen divided by its
original cross sectional area, formally called engineering stress. To compare specimens of
different sizes, the load Is calculated per unit area, also called normalization to the area.
Force divided by area is called stress. In tension and compression tests, the relevant area is
that perpendicular to the force. In shear or torsion tests, the area is perpendicular to the axis
of rotation. The stress is obtained by dividing the load (F) by the original area of the cross
section of the specimen (A,).



Axial Stress and Strain

Strain is the ratio of change in length due to deformation to the original length of the

specimen, formally called engineering strain. strain is unit less, but often units of m/m (or
mm/mm) are used.

The strain used for the engineering stress-strain curve is the average linear strain, which is

obtained by dividing the elongation of the gage length of the specimen, by its original
length.

I-1 Al




Shear Stress

Tensile and compressional stress can be
defined in terms of forces applied to a
uniform rod.

Shear stress Is defined Iin terms of a
couple that tends to deform a joining
member. E

T=E

where
e T shear stress [Pa]
e F applied force [N]
e A cross-sectional area [m?]

> f

i

=&

P

3) Shear stress results from a force  b) Shear stress tends te deform an ob-
couple jECt &S ShOWn

Shearing Stress

Area A

/s ForceF
=
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Shear force definition

Shear force iIs a force acting In a direction that's
parallel to a surface or cross section of a body. The
word shear Iin the term is a reference to the fact
that such a force can cut, or shear, through the
surface or object under strain. In solid mechanics,
shearing forces are unaligned forces pushing one
part of a body In one specific direction, and
another part of the body in the opposite direction.
When the forces are collinear (aligned into each
other), they are called compression forces.

Cross-section

Longitudinal direction

13



Shear force example

Example: Cutting bread, Cutting paper, beam bending, drawing picture, sliding cash note,
painting, brushing teeth, bone shear failure etc.

Tension zone

Flexural Shear  Flexural Flexural / shear
cracks () cracks cracks (+) combination cracks

Figure: Shear force example
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Bending Moment

Bending moment is the internal resistance of a
structural element to bending when an external —_— Bending moment M
force iIs applied. It's a measure of the effect of a e

load that causes a structural member to bend. ]
; ] rorce
Bending moment = Force x Distance - >

Deformation

In civil engineering, deformation is the Figure: Bending moment
change in shape or size of an object due to an

applied force or change in temperature.



115G

Unloaded Tension Compression Bending

e 4
» Cla
-«
<L
Shear Torsion f
Combined
loading

Figure: Different types of loading condition in material.
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A tensile stress-strain diagram, also known as a stress-strain curve, illustrates the
relationship between a material's stress and strain. The curve can be used to determine a
material’'s characteristic values, such as its elastic behavior and tensile strength.

Some properties of a tensile stress-strain diagram include:

Proportional limit: The highest stress at which stress and strain are directly proportional.
This is the point on the curve where the deviation from the straight-line portion begins.

Elastic limit: The greatest stress a material can withstand without any permanent strain.
Yield strength: The stress required to produce a small amount of plastic deformation.

Modulus of resilience: The work done on a unit volume of material as the force increases
from zero to the elastic limit. It is also known as Young's modulus of elasticity, and is
analogous to the stiffness of a spring.



Hooke’s Law

For materials stressed in tension, at relatively low levels, stress and strain are proportional
through:

c=EK¢

Here, constant E is known as the modulus of elasticity, or Young’s modulus.

Within the linear region, a specific type of material will always follow the same curves
despite different physical dimensions. Thus, it can say that the linearity and slope
are a constant of the type of material only. In tensile and compressional stress, this

. . . FrA
constant is called the modulus of elasticity or Young's modulus (E). So £ = <7

where stress = F/A in N/m?strain = DI/I unit less

E = Modulus of elasticity in N/m?



The modulus of elasticity has units of stress, that is, N/m?. The following table gives the

modulus of elasticity for several materials. In an exactly similar fashion, the shear modulus

IS defined for shear stress-strain as modulus of elasticity.

Material Modulus (N/m?)
Aluminum 6.89 x 10%°
Copper 11.73 X 10 20.70 X 10%

Steel 2.1 x 108



Strain hardening refers to a material becoming
- - - . . - at d.-,"':"-\jp _,//
stronger and harder with increasing strain, while ° gy I

No hardaning/softening

strain softening means a material becomes
weaker with Increasing strain; essentially, iIn "BNing \

strain hardening, stress increases Wwith

deformation, whereas in strain softening, stress

decreases with deformation as strain increases.
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Ductility:

Ductility describes the extent to which a
material (or structure) can undergo large
deformations before fracture. The term is
used in earthquake engineering to designate
how well a building will endure large lateral
displacements imposed by ground shaking.

A ductile structure's ability to dissipate energy
during an earthquake Is, therefore, also
advantageous as it will keep deforming
without reaching ultimate failure or collapse.
An example of a ductile structure iIs a properly
detailed steel frame with that will enable it to
undergo large deformations before the onset of
failure.

Stress

Stress-Strain curve for ductile and brittle materials

>

Strain

{ Typical Ductile Material ‘

Stress

Strain

I,,

Typical Brittle Material
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Brittle
B

Ductile

Stress

Strain

Figure: Brittle vs Ductile Material.
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True Stress versus Engineering Stress

While both "stress" and "strain" measure
deformation in a material, the key difference
between "true stress/strain' and
"engineering stress/strain” lies in how the
cross-sectional area is

considered: "engineering" calculations use the
original cross-sectional area of the material,
while "true" calculations use the instantaneous,
changing cross-sectional area during
deformation, making true stress/strain values
always higher than engineering stress/strain,
especially at large deformations.

A

lrue Wj

—

engineernng

stress
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Hardness

Hardness is the resistance of a material to localized plastic deformation. Hardness is a
measure of a material's resistance to permanent deformation. Toughness is a measure of how
much deformation a solid material can undergo before fracturing. Hardness is often
Inversely related to ductility, so the ductile metals mentioned above typically have relatively
low hardness.

The product El Is termed the "beam stiffness", or sometimes the "flexural rigidity". It is
often given the symbol X. It is a measure of how strongly the beam resists deflection under
bending moments.



Stiffness 1s how a component resists elastic deformation when a load is applied. Hardness is
resistance to localized surface deformation.

The modulus of rigidity, also known as shear modulus, is defined as the ratio of shear stress
to shear strain of a structural member. This property depends on the material of the member:
the more elastic the member, the higher the modulus of rigidity.

Stiffness Is the extent to which an object resists deformation in response to an applied force.

Elastic modulus 1s a measure of stiffness. Steel is stiffer than rubber thus its modulus is
higher.

Stiff — not easily bent or changed in shape. Rigid — unable to bend or be forced out of
shape, not flexible.

Rigidity, on the other hand, refers to the opposite property of elasticity. It is the inability of a
material to deform under an external force. Flexibility is the ability of a material to bend,
twist or stretch without breaking. This property depends on the material's elasticity and
plasticity.



Resilience

The resilience of the material is the triangular area
underneath the elastic region of the curve. In physics
and engineering, resilience is defined as the capacity
of a material to absorb energy when it is deformed /_\
elastically and then, upon unloading to have this
energy recovered.

Load
Stress

Toughness
Toughness -
- - Resllience
The area underneath the stress-strain curve is the
toughness of the material- i.e. the energy the material Deformation Strain
can absorb prior to rupture.. It also can be defined as
the resistance of a material to crack propagation. The Comparison between resilience and toughness of metals

ability of a metal to deform plastically and to absorb
energy in the process before fracture is termed
toughness. A material with high strength and high
ductility will have more toughness than a material
with low strength and high ductility.



Poisson ratio

Poisson ratio is the ratio of transverse contraction (or expansion) strain to longitudinal
extension strain in the direction of stretching force. Tensile deformation is considered
positive and compressive deformation is considered negative.

dS trans
()

dsamia.!

Torque (Twisting Moment)
Torgue typically refers to the tendency of a force | ; Foroe
to rotate an object around an axis. It is commonly
used In the context of engines, vehicles, and
rotating machinery. Torgue is a measure of the
rotational force applied to an object and is ‘
typically expressed in units such as newton- Tension in Bolt
meters or foot-pounds.

Clamping Force on joint
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Hoop stress and longitudinal stress are two types of
stress that occur in cylindrical pipes:

*HOoOop stress

Also known as tangential stress, this stress runs around
the pipe In a ring-like pattern. It's caused by internal
pressure and acts perpendicular to the pipe's axis and
radius.

Longitudinal stress

This stress runs up the pipe in an axial direction. It
occurs when the length of the pipe changes due to
normal stress.

The relationship between hoop stress and longitudinal
stress depends on the thickness of the pipe wall relative
to its radius:

*Thin-walled pipes

In most practical engineering applications, the hoop
stress iIs about twice the magnitude of the longitudinal
stress. This 1s because the wall thickness is small
combpared to the radius..

Clrcumferential =
Stress

.
~ \.-. ~\
-

.
~ .
Circumferentiol el

Stress N

ongltudinal Stress

Longitudinal stress and Hoop stress
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Thick-walled pipes
In these cases, the relationship between the two types of stress is more complex and may
require more advanced analysis.

Click this link

Hoop Stress

Longitudinal Stress

36


https://www.youtube.com/watch?v=ZxXgX4GG-9g
https://www.youtube.com/watch?v=hxMzfHuk5Po
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Solu
tion:

A
=,
MA =50 K-ft. C
N

oK

10’

RA:5K

oK

50 K-ft.

SFD

|

BMD

oK

0 K-ft.

S F, =0
:>5-RA:O
=> R, =5 K.

ZMA:O
=>5x10-My =0
:>MA:5OK-ﬂ.
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oK

Solu
tion:

oK

0 K-ft.

A

>

10’ Q

T

RA:5K

SFD

—

BMD

5K

50 K-ft.

) MA =50 K-ft.

> F,=0
=>5-R, =0

=> R, =5 K.

> Mp=0
=>5x10-My =0
=> M, =50 K-ft.
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Solu
tion:

RA:5K

5K

oK

0 K-ft.

SFD

! 50 K-ft.

5K

BMD

!
‘ 10 LE D My = 50 K-ft.

S F, =0
=>-5+R, =0
=> R, =5 K.

ZMA:O
=>5x10-My =0
:>MA:50K'ﬁ.
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Solu
tion:

5K

R

A
» e ) My = 25 K-ft.
1
A=9

K 2. Fy=0
:>5-RA:O
:>RA:5K.

SKE i

ESK
SFD | Y My =0
| =>-5x5+M,=0

0 Kft ‘ => M, =25 K-ft.
25 K-ft.

—

1
1
—

BMD |

e ——
1
1
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Solu
tion:

A
3 k/ft.
A 4 A 4 VvV A 4 A 4 VV\
, ) MA =50 K-ft.
5 N
F,=0
R, = 15K 2 by

:>3X5'RA:O
—>R, = 15K.

0K 5
19 Curve -

15K
| SFD
| | 2 My =0
i 2
0 KAt = =Y. M =0
. 20 Curve i 2
; 137.5 K-ft. 3 x 52
: | =>M, = = 37.5 K-ft.
BMD 2
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Solu

tion:

oK

|

/77

10’

SFD

19 Curve -

oK

"~ SPD ]

| —I

10 CurvelE

3 k/ft.

19 Curve —
| SFD |

20 Curve i
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Solu
tion:

My = 37.5 K-t C P

' 29 Curve
37.5 K-ft.!

A
-, 5
Ra =15K
15 K- 19 Curve
I SFD

BMD

3 k/ft.

0K

0 K-ft.

> Fy =0
=>3X5-R, =0
=>R, =15 K.
2. My =0
=W M =0
2 A4
2
:>MA:3’“25 = 37.5 K-ft
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tIOﬂ: 5 5’ FD M, = 112.5 K-ft.

Ry =15K ZFy:O
=>3Xx5-R, =0
=> R, =15 K

SFD My =0

=>WI (5+2) - M, =0

1125 K-ft. =>M, =3x5 (5 + %): 112.5 K-ft.

1° Cuve
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w k/ft.

10 k/ft.
lution: X LFy =9
Solution: R =>05x9x10-R, =0
! Mp =135 K-ft.  _ _
. AN ) =>R, =45 K.
Ry =45 K S M, =0

=> Area X cantorial distance - M4 =0

— X |
OKM =>0.5Xx9x10x - M, =0
| 45 K

=> M, = 135 K-t.
SFD
i =_l 10 10 _ w
0 K-ft. Ve=op XX 9 x
i 2
_ 5x 10
= - —[0<x<9] =>WwW=—,
i135K1"t. M =5 Z.x[OSX<9] 9
BMD — =
X 9 3
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_ 1 10
%(—BO-E.X.GE.X)

:30-%
6

o |5
1l
2|

Solution:

X

MX:-120+3OX-%.-

M, =120 K-ft. T
3
[0<x<6]

RA:3OK

[0<x<6] => W=

SFD X V, (kip) | M, (Kip-ft.)
0 30 - 120
2 26.67 - 62.22
4 16.67 -17.78
6 0 0

BMD
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10K

|

Solution:

RA:].OK

A B
A 3 6 3 /2
I I
RB =10K
10K | i
i _ 10 K
SFD | |

0 K-ft.

BMD

Y My =0

=>10x3+10x (6+3)-Rg x12=0
=>Rp x 12 =30 + 90 = 120

=> Ry = 120/12=10 K

> Fy =0

=>R, +Rp -10-10=0

=>R, =20-Rp =20-10=10K
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Introduction

Pressure vessels are used to hold fluids such as liquids or gases that
must be stored at relatively high pressures.

Pressure vessels may be found in settings such as chemical plants,
airplanes, power plants, submersible vehicles, and manufacturing
processes.

Boilers, gas storage tanks, pulp digesters, aircraft fuselages, water
distribution towers,inflatable boats, distillation towers, expansion
tanks, and pipelines are examples of pressure vessels.

A vessel can be classified as thin walled if the ratio of the inside
radius to the wall thickness is greater than about 10:1



Concept of Thick & Thin Cylinder or Shell

A cylinder or spherical shell is considered to be thin when the metal

thickness i1s small compared to internal diameter.i. e., when the wall thickness,
‘t’ 1s equal to or less than °d/20°, where *d’ is the internal diameter of the
cylinder or shell, we consider the cylinder or shell to be thin, otherwise thick.

The following assumptions are made in order to derive the expressions for
the stresses and strains in thin cylinders :

(1) The diameter of the cylinder i1s more than 20 times the thickness of the
shell.

(11) The stresses are uniformly distributed through the thickness of the wall.
(in)“Fhe ends of the cylindrical shell are not supported from sides.



These cylinders are subjected to fluid pressures. When a cylinder is subjected to a internal
pressure, at any point on the cylinder wall, three types of stresses are induced on three
mutually perpendicular planes.

Hoop or Circumfierential Stress (o) — 1his 1s directed along the tangent 1o the

. 5 .
. 44 . SN 4 —_ stv el ) T F Iy et " A SR O : i : T
réumicerence anda iensiien 1ALUC ||l[l~. LNCTC WL DC 1NCIrecase 1in diameawa

Longitudinal Stress (o, ) — This stress 18 directed along the iength of the cylinder. This 1s

also tensile in nature and tends to increase the length.




S ~r :
' Crircaumferential

/ \ stress / \ s
| h '_l_ | . Longitudinal

:. | .‘ > * » } -
| j 'k' | axis

The stress acting along the circumference of the cylinder is called circumferential stresses
whereas the stress acting along the length of the cylinder (i.e., in the longitudinal
direction ) i1s known as longitudinal stress

l.\;.?'; e



. o

P - iternal pressure (stress)

.- circumferential stress

.



EVALUATION OF CIRCUMFERENTIAL or HOOP

STRESS (6.):
T— !
K SR IR
ety

Consider a thin cylinder closed at both ends and subjected to internal
pressure ‘p’ as shown in the figure.
Let d=Internal diameter, t = Thickness of the wall

ot = Length of the cylinder.




" Resisting force (due to circumtfere ntial stress o, ) =2 x o_x t x
dl
Under equillibri um, Resisting force = Bursting force

e, 2xo, xtxdl =pxdxdl

g : x d
~.Circumfere ntial stress, o = B v (1)

2%t




LONGITUDINAL STRESS (9g)):

A
- = The bursting of the cylinder takes
f— —2A place along the sectionAB
e— =
————— ) -
R @
." \
P ; )
\ J
X / \ //
\\__/ - \\_/

weeeel NE fOrce, due to pressure of the fluid, acting at the ends of the 7

thin cylinder, tends to burst the cylinder as shown in figure




Under equilibrium, bursting force = resisting force

i.c..px%mﬁzo  xxdxt

ey x d
Longitudin al stress, o, bt gy

Fromeqgs (1) & (2), o, =2x0,




Problem 17.1. A eylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected to
" an internal fluid pressure of 1.2 N/mm?®. Determine :

(i) Longitudinal stress developed in the pipe, and
(i) Circumferential stress developed in the pipe.

Sol. Given :
Dia. of pipe, d=15m -
Thickness, t=15em=15x10"m :

Internal fluid pressure, p = 1.2 N/mm?

s . ¢t 1.5x107% 1
therauog- 15 " 100° whichialessthan - hence this is a case of thin
cylinder.

Here unit of pressure (p) is in N/mm?®. Hence the unit of o, and o, will also be in N/mm?.
(¢) The longitudinal stress (o,) is given by equation (17.2) as,
pxd
4t
1.2x1.5 o
N IER 10T T [,
(if) The circumferential stress (o) is given by equation (17.1) as

0, = %
12x15

= 2x15%10"

O‘B

= 60 N'mm?®. Ans.



; Problem 17.2. A cylinder of internal diameter 2.6 m and of thickness 5§ cm contains a
gas. If the tensile stress in the material is not to exceed 80 N/mm?, determine the internal

pressure of the gas.
Sol. Given :
Internal dis. of cylinder, d=25m
Thickness of cylinder, t=5em=5x10"m

Maximum permissible stress = 80 N/mm?

As maximum permissible stress is given. Hence this should be equal to circumferential
stress (o,).

We know thauhedmumfémnualstraesahouldmbemmrthanthe maximum per-
missible stress. Hence take circumferential stress equal to maximum permissible stress.

o, = 80 N/'mm?*
Let p = Internal pressure of the gas
Using equation (17.1),
%5
-3
or pgz";ﬂl-z"ﬁ"z“; X80 (Here unit of o, is in N/mm?,

hence unit of p will also be in N/mm?)
= 3.2 N'mm?, Ans.



100 m. If the weight density of water is 9810 Nim?, find the thickness of the metal required for -

Problem 17.5. A water main 80 c¢m diameter contains water at a pressure head of

the water main. Given the permissible stress as 20 Nimm?. (AMIE, Summer 1974)
Sol. Given : ’
Dia. of main, d =80 cm

or

is given as

-

Pressure head of water, A = 100 m
Weight density of water, w = p x g = 1,000 x 9.81 = 9810 N/m?
Permissible stress = 20 N/mm?
Permissible stress is equal to circumferential stress (o,)
o, = 20 N/mm?
Pressure of water inside the water main,
p=pxgxh=wh=9810 x 100 N/m?
Here 0, is in N/mm?, hence pressure (p) should also be N/mm?. The value of p in N/mm?

9810 x 100
P = 1000° mm? Vmm? (»* 1m=1000 mm)
= 0.981 N/mm?*
Let ¢ = Thickness of the metal required.
Using equation (17.1),
d
°1";::¢ (Here ‘d" is in em hence ‘t" will also be in cm)

pxd _0.981x 80
'gzxo, 2x20 =2cm. Ans.




Thermal Stress-Strain

Week 9

Pages (75-80)



» Temperature changes occur:

www.engineeringchsl.com

Figure 7. Comparison of Abaqus Model Results and Forensic Evidence.



Thermal effects

2es in temperature produce expansion or
actior {of”materials and result in thermal
gins and thermal stresses
r most structural materials, thermal strain € is

roportional to the temperature change AT :

er S a (AT)

coefficient of thermal expansion

-

’ua nve ntion is needed for thermal strains, we

me that expansion is positive and contraction is

W

FIG. 2-19 Blg
material subj
increase in temp




‘Thermal Stress

N

we have a bar subjected to an axial

3
28

e=0/E

\lso suppose that we have an identical bar
cted to a temperature change AT.

Ne will then have:

er = a (4T) FIG. 2-20 Increase in lengtt

Zquating the above two strains we will get: a prismatic bar.
- due to a unifo

o=Ea (AT) in temperat!. ,'l“ | 2164
‘ between axial stress and change in




FIG. 2-19 Block
material subjec
increase in tel




nermal Strain

.

in the case of lateral strains, thermal strains
ot induce stresses unless they are constrained.
( l strain in a body experiencing thermal stress
may ‘divided into two components:
Strain due to stress, £, and
?T_iih;at.due to temperature, £; .

E, + &p
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Expression for bending Stress
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Expression for Bending Stress




Expression for Bending Stress

-1 Consider a small length Ox of a beam subjected to simple
bending.

1 Due to the action of bending, the part of length Ox will be
deformed as shown in Figure 4.

1 Let, A/ B/ and C/ D/ meet at O.
1 R = radius of neutral layer N/N/
— B = angle subtended at O by A’B/ and C/D".

—1 Consider a layer EF at a distance y below the neutral layer
NN. After bending this layer will be elongated to E/F/.

1 Original length of layer EF = Ox
1 Length of neutral layer NN = Ox.
-1 After bending length of neutral layer remains the same.



Expression for Bending Stress

o
- 4a--.. A\
1 Therefore, NN = N/N/ = Ox. /’N"\
1 Now from Figure 4, N/N/ = R* 6 ‘./. R
- and E'F/ = (R+y)* 6 f
o but NN = N/N/ = dx
-1 Hence, Ox = R* O
=1 Increase in the length of the layer EF = E/F/ - EF
o =(R+y)*O-R*O=y* O
Strain in the layer LI = I’;cr::‘::ea:?:::f:h = z: = ﬁ
1 Since R is constant, strain in a layer is proportional to the distance

from the neutral axis.
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Expression for Bending Stress

—J

L]

| Stress Variation

O = Stress in the layer
E = Modulus of elasticity
Then, stress = Strain x modulus of elasticity
E o E
o= —V — = —
R v R

Since E and R are constants, therefore stress in any
layer is directly proportional to the distance of the
layer from the neutral surface.
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Expression for Bending Stress
-

]

0

Neutral Axis and Moment of Resistance

a

e

Figure shows the cross section of a beam. Consider a small layer of
area dA at a distance y from the neutral axis.

Now force on the layer = stress in the layer * area of the layer =

o * dA=§y*dA

Total force on the beam section = ny wdA = Ef v =dA
R R
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Expression for Bending Stress
m—

Moment of Resistance

Due to pure bending layers above the N.A. are subjected to
compressive stress whereas the layers below the N.A. are
subjected to tensile stresses.

1 Due to these stresses, the forces will be acting on the layers.

-1 These forces will have a moment about the neutral axis. The
total moment of these forces about the N.A. for a section is
known as the moment of resistance of that section.

-1 Moment of the force of the layer about N.A.

E
L S dA«y =—y°dA



Expression for Bending Stress

1 Total moment of the forces on the section of the beam =

B
f—v dA
R-

1 Let M = external moment applied on the beam.
-1 For equilibrium, external moment = internal moment

M==[y2da

1 The moment of inertia of the area = fysz

- El M E
H e M ——or — — —
R I R



Expression for Bending Stress

aF

M "
ST — Since
Iy

F E-']
v R

) .rq-.:'fi‘
Eenzimg Styess ¢F = —

I



Important Points of the Flexure Formula

1 The cross section of a straight beam remains plane when the beam
deforms due to bending. This causes tensile stress on one portion of
the cross section and compressive stress on the other portion. In
between these portions, there exists the neutral axis which is
subjected to zero siress.

-1 Due to the deformation, the longitudinal strain varies linearly from
zero at the neutral axis to a maximum at the outer fibers of the
beam. Provided the material is homogeneous and linear elastic, then
the stress also varies in a linear fashion over the cross section.
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Important Points of the Flexure Formula

[ 1

The nevutral axis passes through the centroid of the cross-sectional
area. This result is based on the fact that the resultant normal force
acting on the cross section must be zero.

The flexure formula is based on the requirement that the resultant
internal moment on the cross section is equal to the moment

produced by the normal stress distribution about the neutral axis.
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Section Modulus

The term | /c in expression for maximum bending stress is known as
section modulus.

The advantage of expressing the maximum stresses in terms of
section moduli arises from the fact that each section modulus
combines the beam’s relevant cross-sectional properties into a single
quantity.

T

| = bh3/12 c =h/2

O 7

Section modulus, z = | /c = bh2/6
b—>2—
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Section Modulus

| =nd*/64 c=d/2

Section modulus, z = | /c = nd3/32
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Section Modulus

;_BD’ bd’
120 12
c=D/2

Section modulus Z = | /¢

Y S
Z—6D(BD bd*)
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Bending stress related problem

Week 11
Pages (96-102)



Example #1

A beam is loaded by a couple of 1400 N-m at each of its
ends, as shown in Figure. Determine the maximum bending
stress in the beam and indicate the variation of bending stress
over the depth of the beam.

1400 N - m Y -m

(— S

._Lm




e MC . ADOR000 . enirih po

I 0.02x0.04°/12

—-—l 262 MPa lﬂ-—



Example #2

A simple beam AB of span length 22 ft supports a uniform load of
Intensity 1.5 k/ft and a concentrated load 12 k. The

concentrated load acts at a point 9.0 ft from the left-hand end of the
beam. The beam has a cross section of width b = 9.0 in. and height h

= 27 1in.
P=12Kk
~—9 fi
| ' l g = 1.5 kK/ft |
4 ¥ \ 4 l v ) 4 4 ) 4 l 4 ) 4 ‘] B

!< L=22ft >I




P-12k
«—9 ft M :O
’ l g = 1.5 k/ft >Ma

1.5%22%22/2 + 12*9 —Ry*22 =

4 \ 4 k4 y Y ¥ v ¥ y

A B 0
' %3 Ry=21.41k R, = 23.59K
Ra L=22ft J Re
L 23.59
(k) . Shear at point load = Ry— 1.5*9
; ™™ =23.59-135
_1.91‘\\\J = 10.09 k
—21.41
A 151.6

(k-ft) Moment at point load = Ry* 9— 1.5*9*9/2
= 23.59*9 — 13.5*4.5
0 = 151.6 k-t




Moment of inertia | = bh3/12

= 9%(27)3/12
h= 27 in. = 14,762.25
in4
c=h/2 =13.5In
o Maximum bending o = Me _ 15LOTLZTISS _ g geaysi
b=9in. Sess | 14762.25
1663 psi

/
A

1663 psi




A steel cantilever beam 6 min length is subjected to a concentrated load of
1200 N acting at the free end of the bar. Determine the magnitude

and location of the maximum tensile and compressive bending stresses in
the beam.

1200 N

6m

AL LIS LA

J200N . m

i




3cm 3 3
I_4x6 3Ix4 —56cm4
7L— NA. T 12 12.
— |l cm
3cm
| Mc 7200 % 0.03 A
g = = =386 x10"Pa
L :I"’"‘ I 56x10°°
'V_
6em — T My  7200%0.03
I o="2= = =300x10° Pa
1 I 0.04%x0.06/12
§ e




Torsion

Week 12-13
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T orsion

Consider aa bar to be rigidily attached at one end and twisted at the othher end by a
torque or twisting moment T eguivalent to F < d, which is applied perpendicular to the

axis of thhe bar, as shown in the figure. SucihT a bar is said To be in torsion.

F =% ‘lf
=

TORSIONAILIL . SHEARING STRESS,. T

For a solid or holiow circular shaft subject to a twisting moment T, the torsional

shearing stress « at a distance o from the centesr of thhe shaft is

T = —— o] Tuose =

7

where J is the polar moment of inertia of the section and r is the cuter radius.

For solid ocylindrical shaft:

For hollow cylindrical shafu:

= - -
= e DO —F)
4 32(
16T D
:t(D‘-d‘)

T zzumoc

104



ANGLE OF TTWIST

T he angle & through which thhe Dar fength L will twist is

a - TS I radians
J<

where T is the torgue in N-rmmm, L is the length of shaft in mm, G is shear modulus in

MPa, 3 is the polar moment of inertsaa in M, D and d are diametes in mm, and r is the
radius in mrmm.

POWER TRANSMITIFEFD BY THE SHAFT

A shaft rotating with a constant angular wvelocity o (in radians per second) is being acted

by a twisting moment T. The power transmitted by the shaft is
P T = 2xTf

where T is the torgue in N-m, f is the number of revolutions pesr second, and P is the
poOower in watts.,

Solved Problems in Torsion

FProblam 303

A steel shiaft 3 ft long that has a diameter of € in. is subjected to & torgue of IS kKip-ft.
Determine the maximum shearing stress and the angle of twist. Use G = 12 > 10° psi.

Solution 303

16T 1S(ASMIOOO ML)
wi>" ={%" )

Tunas = 14 323 gl

Torae ™ 132 3 k=i

T

TL _ 1S{(3MI1000)(12>7)
J< ST I MIAZT «20°)
© — 0.0215 rad

e = 1.23

S =
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Problem 305
What is the minimum diameter of a solid steecel shaft that will not twist through more

than 39 in a &6-mm fength when subjected to a torque of 12 KN-mMm? What maxirmum

shearing stress is developed? Use G = 832 GPa.

Solution 305
PR ¢ ~
G
3‘,{ - ) 12{63( 1000 )
180° w td *(S3 000)
A = 113 95 aea

= - 167 _ 16(12)(10007)
- ek (113 .98%)
Toas ™ 41.27 MPa

Problem 306
A steel marine propeller shaft 14 in. in diameter and 18 ft long is used to transmit SOCO
hp at 189 rpm. IfF G = 12 > 10% psi, determine the maximum shearing stress.

Solution 306
T = > = S000 (396 000)
2mnF Zm{18S<9)

T = 1 667 337.5 1ban

> _ 16T _ 16{1667 337.5)
- e =(14°)
Tunas = 3094.6 PS'

Problerm 307
A =solid steeel shaft S m long is stressed at SO0 MPa when twisted through S€°. Using G =
83 GPa, compute thhe shaft diameter. What power can be transmitted by thhe shaft at 20

H=7
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Soiuticon 307

FProblifaerm 30sS

A S-in-diameter steael shaft rotates at 290 sprmm. I[f the shearning stress is imiited to 12

kKsi, determiine the rmaximurnm horsepower that can be transmitted .

Soiution 308

o = 1L
J<=
a=i ™ = T(S5HIC1LO00)
L rso° — T~ (S3 000)

16(O. 1138
nds
o = A1 3S zxuxan

s0 -

=
2xF
- >
@-xz 2=(20)
& — I3 .35%— 132 3{13S%

T =

Fo— S ASS 237 2855 N o/ sec

F =5 186 237.28 W
o= S.19 NIW

- - g
e
16T
A2{1000) — ——
===

T = 1S 539 .56 Ib s

2
T e s
23 F
1S Sa49 56 =— N 2
Z{2490)

P = 71.7S hp
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Problerm 318
A solid alumiinurm shaft 2 in. in dameter is subjected to two Torgues as shown in Fig. P~
331 8. Deterrmine the maxirmurm shearing stress in each segrment and thhe anglie of rotation

of the free end. Use G = 2 = 10% psi.

Sofution 318

- _ 16T
i

For 2-ft segament:

A1S(SO00X12)
x(=2*)

For 3-ft seganents

1S(SO0N(12)
(2>

- ASS3 66 prsi

Toume ==

Tamvaxs - GiIl1l1. .55 PSi
I
i<
— —1 TL
Fe =
1
- 2 {2 (a2 =10°) [SO0(2) = SO00(3)] (L2

- 0.0S825 rad
-3 73=

9 0 0 0
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Mohr Circle construction Principle
Week 14
Pages (110-112)



MOHR'S Circle For Plane Stress

The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr’s
circle. It is so named in honor of the German Professor in civil engineering Otto Christian Mohr (1835-1918),
who in 1895 suggested its use in the stress analysis.

In this section, we will show how to apply the equations for plane-stress transformation using a graphical
procedure that is often convenient to use and easy to remember.

If we write the earlier mentioned equations:

or - o oar - o
o, + o, o, — o, : a- Ty 2 s . . .
oy = — + = cos 20 + 7, sin 26 5 ( > ) = ( > )c‘"‘ 20 + T, s 29
T, T T, == = o, — o,
- = - s +~ = » T s == e 2 + 7 2
. > - L in the form: > sn 20 + 7,, cos 20

then the parameter 6 can be eliminated by squaring each equation and adding them together. The result is:

o, + o, = . Ty, — Gy \- -
@y — a - = Bt = -> = Tax

Since ox, oy, Txy are known constants, then the above equation can be written in a more compact form as:

o, T o

.

B 3 >

= = = . (". - &y = 2
(@ — TV + 720y = R or (o, — o  r+5, =R — R=, 5 *+ T

If we establish coordinate axes, o positive to the right and T positive downward, and then plot the above
equation, it will be seen that this equation represents a circle having a radius R and center on the s axis at
point C (o avg, 0)
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Mohr’s circle can be plotted from in either of two forms. In the first formm of Mohr's circle, we plot the normal
stress ox1 positive to the right and the shear stress Tx1y1 positive downward. The advantage of plotting
shear stresses positive downward is that the angle 286 on Mohr's circle will be positive when
counterclockwise, which agrees with the positive direction of 20 in the derivation of the transformation
equations.

In the second form of Mohr's circle, Tx1y1 is plotted positive upward but the angle 20 is now positive
clockwise which is opposite to its usual positive direction. Both forms of Mohr’s circle are mathematically
correct, and either one can be used. However, it is easier to visualize the orientation of the stress element if
the positive direction of the angle 26 is the same in Mohr's circle as it is for the element itself. Furthermore,
a countercliockwise rotation agrees with the customary right-hand rule for rotation. Therefore, we will choose
the first form of Mohr’s circle in which positive shear stress is plotted downward and a positive angle 28 is
plotted counterclockwise.

: u\ky‘v - . \_I\R)/ N

‘r-‘\ oL

g A2
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Construction of Mohr's circle of stress:
With ox, oy, and Txy known, the procedure for constructing Mohr’s circle is as follows:

1.

2.
3.

5.

6.

Draw a set of coordinate axes with ox1 (positive to the right) and Tx1y1 as ordinate (positive
downward).

Locate the center C of the circle at the point having coordinates ox1= o avg. and Tx1y1=0.

Locate point A, representing the stress conditions on the x face of the element, by plotting its
coordinates ox1= ox and Tx1y1= Txy. Note that point A on the circle corresponds to 8=0. Also, note that
the x face of the element is labeled "A™ to show its correspondence with point A on the circle.

Locate point B, representing the stress conditions on the y face of the element, by plotting its
coordinates ox1= oy and Tx1y1= -Txy. Note that point B on the circle corresponds to 6=90°. In addition,
the y face of the element is labeled “B™ to show its correspondence with point B on the circle.

Draw a line from point A to point B. This line is a diameter of the circle and passes through the center
C. Points A and B, representing the stresses on planes at 90° to each other, are at opposite ends of the
diameter (and therefore are 180° apart on the circle).

Using point C as the center, draw Mohr's circle through points A and B. The circle drawn in this manner
has radius R.

Then, from the geometry of the figure, we obtain the following expressions for the coordinates of point D:

- ory - =

B e =)

o S
0L

t s "‘

i o | X -,
"l'_ \_-\
o, + o,
o = ¥ Rcos B E o = Rsin B

Mechanics of VMiaterials Z2nd Ciass Dr. As
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Mohr Circle Related Problem

Week 15-16
Pages (114-122)



EXAMPLE 3-7

Using Mohr’s circle, determine the stresses acting on an element inclined at an angie 6=30°.

Solution:

o _% " 9% _ 90 MPa + 20 MPa
. 2 2
Point A, representing the stresses on the x face of the element (& = 0), has
coordinates

o - 90 MPa T, =0

- .0
Similarly, the coordinates of point B, representing the stresses on the y face
(& = 907), are

= 55 MPa

o, = 20 MPa Siin =0
. — . \E 90 MPa — 20 MPa \?
= e 2 = s
R \( 3 )+r,, \( 3 )+0 35 MPa

Stresses on an element inclined at 6§ = 30°. The stresses acting on a
plane oriented at an angle & = 30° are given by the coordinates of point D,
which is at an angle 26 = 60° from point A

(Point D) o, = g, + R cos 60°

- sver

= 55 MPa + (35 MPa)Mcos 60%) = 72.5 MPa

B == sin 60° = —(35 MPa)(sin 60°) = —30.3 MPa
(Point D) G, = O, — Rcos60°
= S5 MPa — (35 MPa) cos 60°) = 37.5 MPa
T = Rsin 60° = (35 MPa)(sin 60°) = 30.3 MPa

P‘

B 'a,=zo.\m.

— [ =~ o2

|

]D!U: 307)

303
A l Ty
B (=0
He=90"

D
(8= 120°)
55

v
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EXAMPLE 3-8

Using Mohr’s circle, determine the following quantities:

(a2) The stresses acting on an element inclined at an angle 6=40°

(b) The principal stresses

(c) The maximum shear stresses.

(Show all results on sketches of properly oriented elements).

Solution:

3 _ % T 9% _ 100 MPa + 34 MPa
— 2 2

Point A, representing the stresses on the x face of the element (6 = 0), has

coordinates

o = 100 MPa L 9

- -y,

= 67 MPa

= 28 MPa

Similarly, the coordinates of point B, representing the stresses on the y face
(6 = 90°) are

o, = 34 MPa L.y = —28 MPa
o, — o,\2 100 MPa — 34 MPa \°
- i 2, - -

R \ ( 3 ) + tf' \ ( > + (28 MmPa)? 43 MPa
28 MPa

tmz@, = ‘55—"‘“?—‘ = 0848 W, = §40.3

DCP, = 80° — ACP, = 80° — 40.3° = 39.7°

(Point D) o, = 67 MPa + (43 MPa)(cos 39.7°) = 100 MPa

g = —{43 MPa)(sin 39.77) = —27.5 MPa

-V,

(Point D7) o,

= 67 MPa — (43 MPa)(cos 39.7°) = 33.9 MPa

b o =
-

A (43 MPa)(sin 39.77) = 275 MPa

B

BN

I
33 MPa
28 MPa

J_*_I(I‘).\u’.:

\

-

-

=i
39.7*

i

A

D v =30%

\ | Piee, =2015%

67

vz

S,

”, = =23X8%

0 3°

Ato=n

- 33

100
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(b) Principal stresses. The principal stresses are represented by points P,
and £, on Mohr’s circle . The algebraically larger principal stress
(point P,) is
o, = 67 MPa + 43 MPa = 110 MPa

as seen by inspection of the circle. Tbeanglezo to point P, from point A
is the angie ACP, on the circle, that is,

ACP, = 26, = 403° 6, = 20.15°

The algebraically smaller principal stress (represented by point P) is
obtained from the circle in a similar manner:
o, = 67 MPa — 43 MPa = 24 MPa

Theangleza to point P, on the circle is 40.3% + 180 = 220.3% thus, the
s«ondptmcpalplamnsdefnedbytheangleo = 110.2°.

(c) Maximum shear stresses. The maximum shear stresses are repre-
sented by points S, and 5, on Mohr’s circie; therefore, the maximum in-plane
shear stress (equal to the radius of the circle) is
Tax — 43 MPa

The angle ACS, from point A to point S, is 90° — 40.3° = 49.7°, and there-
fore the angle 28,' for point S, is

20“ = —49.7°

This angle is negative because it is measured clockwise on the circle. The cor-
respondmgangleo to the plane of the maximum positive shear stress is
one-halfthatvalue.oro = —24.85°.
mnmumnegammm(pointszmthedrde)hasthesamemr-
ical value as the maximum positive stress (43 MPa).

Fyom, =20.15%

r =

2x

AdW=0)
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EXAMPLE 3-9
Using Mohr’s circle, determine:

(a) The stresses acting on an element oriented at an angle 8=-30° from the x axis

(minus means clockwise).

(b) The maximum shear stresses and associated normal stresses.
Show all results on sketches of properly oriented elements.

Solution:

o =5MPa o =0 7 =0

(a) ELEMENT AT # = —30° (All stresses in MPa)
260 = —60° 6 = —30° R = 27.5 MPa

Poimt C: o, = 27.5 MPa
Poinmt D: o, = R + R cos | 26|
= R(l + cos60°) =41.2 MPa
T, — R sin [260] = R sin60° = 23.8 MPa
Point D'- ., = R — Rcos |20]| = 13.8 MPa
i —R sin |28] = —23.8 MPa

(b) MAXIMUM SHEAR STRESSES

Point §,: 260, = —90° 6, = —45°
Toax — R = 275 MPa

Point S,: 20, = 90°F 6, = 45°
Tmin — —R = —27.5 MPa

o...=R=275MPa

aw

55 MPa

S‘
o
R
\
' \
B8 = 907 LAEB =)
o} < ’za:-«r/T .,
S D
f = =307
55 MPa
L 3
D
\ 13.8 MPa

\B_x NMPa

275 MPa
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EXAMPLE 3-10
Using Mohr's circle, determine:

(a) The stresses acting on an element oriented at a counterclockwise angle

B8=22.5° from the x axis.

(b) The maximum shear stresses and associated normal stresses.

Show all results on sketches of properly oriented elements.

20 MPa

Solution:
o, = —60 MPa T, = 20 MPa T = 0
(a) ELEMENT AT 0 = 22.5° .
(All stresses in MPa) @ =0 20
26 = 45° 0 = 225° R
2R = 60 + 20 = 80 MPa R = 40 MPa >6
Point C: o, = —20 MPa @ = 22.5% D : Sy
(b) MAXIMUM SHEAR STRESSES 30 ¢ 20 20 |
60 3
Poimt S.: 260, =90° @, =45° REAE
Toax — R = 40 MPa - =
Point $,: 26, = —90° 8, = —45° - D
¥ = —R = —40 MPa D J axosaps
__ mun N\ |\ -
o, .= —20MPa / N \e=2s
\\ 0 5
\ 28 28 MPs
Mechanics of Miaterials 2nd ¢«

20 MPa

60 MPa
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EXAMPLE 3-11
Using Mohr's circle, determine:
(a) The stresses acting on an element oriented at a counterclockwise angle 6=20°

from the x axis. |

(b) The principal stresses. o X
Show all resulits on sketches of properly oriented elements.
Solution: 16 MPa
AH = 0)
o =0 o =0 7= —16MPa i .
(2) ELEMENT AT # = 20° - 2 10.3 MPa p
(Al stresses in MPa) P \. P D / 10.3 MPa
20 =40° 0@ =20° R = 16 MPa R 7 e Wi
Origin O is at center of circle. ‘\“ -2
Point D: o, = —R sin20 = — 10.28 MPa e 2
. D 12.3 MPa
Ty, — —Rcos20 = —12.26 MPa B (0 = o)
Point D= .. = R sin26 = 10.28 MPa
Ten, = R cos20 = 12.26 MPa §
(b) PRINCIPAL STRESSES 6 NP z /" 16 MPa

Point P 20, = 270° 6, = 135° - \\fﬂ- i
o R = 16 MPa e \

1
Point P,: 20, = 90° @, = 45° )
o,

.= —R = —16 MPa

MVMiechanics of VMiagterials Z2nd Ciass Dr. Ashratf Alfeehan
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EXAMPLE 3-11

Using Mohr's circle, determine:
(a) The stresses acting on an element oriented at a counterclockwise angle 6=20°

from the x axis.
(b) The principal stresses.

Show all results on sketches of properly oriented elements.

Solution:

o =0 o, =0 7= —16MPa

N

(2) ELEMENT AT 8 = 20°
(AIll stresses in MPa)

26 = 4rr 6 = 20° R
Origin O 1s at center of circle.
Point D: o, = —R sin260 = —10.28 MPa

=
N

(b) PRINCIPAL STRESSES

Poimt P : 26, = 270° o,

o, =R = 16 MPa
Point P,: 260, = 90° o,

o, = —R = —16 MPa

10.3 MPa

D

16 MPa

= —Rcos20 = —12.26 MPa
Point D’- ., = R sin26 = 10.28 MPa
= Rcos260 = 12.26 MPa

N

16 MPa

X

16 MPa

10.3 MPa

i

12.3 MPa
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EXAMPLE 3-12
Using Mohr’s circle, determine the stresses acting on an element oriented at an -~
angle 6 from the x axis. Show these stresses on a sketch of an element oriented at
theangle®. (o =21 MPa.o = 11 MPa.7 =8 MPa. # = 50°)

Solution: L_ -

o =21MPa o._ =11 MPa O ~

. A

7.. = 8 MPa 6 = 50°

.\\

(Al stresses in MPa)
R= V(5) + (8) =94340 MPa

S
« = arctan ~ = 57.99°

B=20—a=100°— a=4201°

Point D (8 = 50°): ?
o, =16+ Rcosg = 23.01 MPa
Tav, = —RsinB = —6.31 MPa
16 D’ A =0
Point D’ (8 = —30°): 1
2 J
o, = 16 — R cos B = 899 MPa T
T.., = RsinB =631 MPa o 2301 MPa
. %99 MPa
‘\8 = 50°
P
1

631 MPa
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H.W

Using Mohr's circle, determine the stresses acting on an element oriented at an angle 8 from the x axis.
Show these stresses on a sketch of an element oriented at the angle 6.

1- o = —44MPa o = —194 MPa
7., = —36 MPa # = —35°
% o =31MPa o_= —5 MPa

33 MPa # = 45°

L)
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Thank You



